
DOE MICS PI Meeting
26 June 2002

Argonne National Laboratory

Tools from the Performance Tools from the Performance
Evaluation Research Center Evaluation Research Center

(PERC)(PERC)

http://PERC.NERSC.GOV

PERC
LOGO
HERE

Performance Evaluation Research
Center

?Help users analyze and improve application performance
?Understand architecture characteristics

? Tools
—Memory Instrumentation with Sigma
—PAPI
—SvPablo
—Tau
—Rose
—Performance Assertions

PERC
LOGO
HERE Memory Instrumentation

?Dynamic memory access instrumentation
—collect low level memory accesses
—with the flexibility of dynamic instrumentation

? Possible applications
—offline performance analysis (Sigma etc.)
—online optimization
—tools to catch memory errors

PERC
LOGO
HERE Memory Instrumentation Features

? Finding memory access instructions
—loads, stores, prefetches

?Builds on Arbitrary Instrumentation
?Decoded instruction information

—type of instruction
—constants and registers involved in computing

• the effective address
• the number of bytes moved

—available in the mutator before execution
?Memory access snippets

—effective address in process space
—byte count
—available in mutatee at execution time

PERC
LOGO
HERE Sigma

? Family of tools to understand caches
? Provide hints about restructuring

—Padding (both inter and intra data structures)
—Blocking

?Approach
—Run instrumented program

• Capture full information about memory use

—Post execution tools
• Memory profiler

– share of accesses due to each data structure

• Cache Prediction Tool
– Predict cache misses using symbolic equations

• Detailed simulator
– Full discrete event simulator

PERC
LOGO
HERE

Cache
Simulator

Prediction
Tool

Memory
Ref Tool

dumpMap .addr

Structure of SIGMA Data Collection

source
files

.lst
files

trace
files

Program
Execution

Instrumented
binarySigma

Compile/Link

PERC
LOGO
HERE Representing Program Execution

?Capture full execution behavior
—Record all basic blocks and memory addresses
—Produces large traces (due to looping)

?Trace compression
—Maintain pattern buffer
—Scan for repeating patterns

• Extract memory strides

—Repeat algorithms for nested loops

Base

Stride
Count

Length

BLK1 ADR ADR ADRBLK2

100 200 300

4 4 4

300 500

4 4

ADR ADR

250

7

BLK3RPT

PERC
LOGO
HERE PAPI

? Performance Monitoring Hardware
—Available on most modern microprocessors
—Consists of registers that record data about the processor’s

function
• Event counts
• Data and instruction addresses for an event
• Pipeline or memory latencies

—Control registers for configuration and control
? Performance Application Programming Interface

—The purpose of the PAPI project is to design, standardize
and implement a portable and efficient API to access the
hardware performance monitor counters found on most
modern microprocessors.

—Parallel Tools Consortium project
• http://www.ptools.org/

PERC
LOGO
HERE PAPI: Implementation

Tools!

PAPI Low Level
PAPI High Level

Hardware Performance Counter

Operating System

Kernel Extension

PAPI Machine
Dependent SubstrateMachine

Specific
Layer

Portable
Layer

PERC
LOGO
HERE PAPI 2.1 Release

? Platforms
—Linux/x86, Windows 2000

• Requires patch to Linux kernel, driver for Windows

—Linux/IA-64
—Sun Solaris/Ultra 2.8
—IBM AIX/Power3
—SGI IRIX/MIPS
—Cray T3E/Unicos

? Fortran and C bindings and MATLAB wrappers
?Used in SvPablo, TAU, Vprof
? Planned for next release: P4, Power4, Compaq Alpha

PERC
LOGO
HERE PAPI: Current Research

? Validating PAPI measurements
? Investigating tradeoffs between accuracy and efficiency of

using performance monitoring hardware in counting vs.
sampling modes

?Reducing PAPI overheads
? Investigating new hardware performance monitoring

features (e.g., event qualification by data and instruction
address, collection of latency data) using PAPI
programmable events

?Dynamic instrumentation via dynaprof (uses dyninst to
insert PAPI probes into executable image)

PERC
LOGO
HERE SvPablo - Main Features

?Graphical performance analysis environment
—Source code instrumentation
—Performance data capture, browsing and analysis
—F77 / F90, HPF and C language support

? Performance capture features
—software-based instrumentation (default)
—hardware performance counter data optional, via PAPI

interface
—statistical summaries for long-running codes
—option for real-time data transmission via Autopilot sensors

? Supported platforms
—Sun Solaris, IBM SP, SGI Origin, Compaq Alpha
—Linux (IA-32 and IA-64)

PERC
LOGO
HERE SvPablo Architecture

PERC
LOGO
HERE

SvPablo GUI: Source Line Performance
Data

PERC
LOGO
HERE

Detailed HW Performance Data in
SvPablo

PERC
LOGO
HERE SvPablo: Status and Futures

? SvPablo extended to support new systems
—Alpha and Itanium

?Application performance analyses
?Design for performance model integration

—comparative analysis
—measured and predicted behavior

PERC
LOGO
HERE

?Goal: Simplify Scientific Software Development
—Use Libraries
—Optimize the Libraries at Compile-Time

?Optimize High-Level Abstractions
?User-Defined Abstractions Ignored By Compiler
?ROSE: Compiler Framework

—Recognition of high-level abstractions
—Specification of Transformations

? Example Problem and Results
? See Poster on ROSE

ROSE Project Description

PERC
LOGO
HERE ROSE/SAGE III Abstract Syntax Tree

int main() {
 int a[10];

 for(int i=0;i<10;i++)
 a[i]=i*i;
 return 0;
}

•ROSE AST Features:
•AST Query mechanisms
•AST Rewrite mechanisms
•Semantic actions associated with
grammar rules
•Abstract C++ grammar is predefined
•Higher level grammars automatically
generated from library source
•Source code generation

PERC
LOGO
HERE

Relative Performance Improvement
(Using Preprocessor Build with ROSE)

Number of Processors

Scaling of Array Statement Abstraction
(2nd Order Linear Advection Test Problem)

E
xe

cu
tio

n
T

im
e Slope representing ideal scaling

Number of Processors

Scaling of Array Statement Abstraction
(2nd Order Linear Advection Test Problem)

E
xe

cu
tio

n
T

im
e Slope representing ideal scaling

PERC
LOGO
HERE TAU: Performance System Architecture

PERC
LOGO
HERE TAU: PDT Architecture and Tools

C/C++
Fortran

77/90

PERC
LOGO
HERE TAU: Results from EVH1

PERC
LOGO
HERE Performance Assertions

? Performance expectations are lost
—When compilers introduce static decisions
—When users write code

• Implicit performance expectations

? Existing tools provide a LOT of information
—Users must decide what performance data meets their expectations

? Performance Assertions
—Make explicit a developer’s performance expectations for specific code

segments
—Compare performance expectations with

• Previous results from same/different architectures
• Analytical comparison

? Initial effort
—Library
—Serial performance metrics

PERC
LOGO
HERE Performance Assertions: Goal

? Specify an equation that asserts
some performance expectation

? Portable!

? Easily disabled

? Implicit notion of data collection

? Integrate application state into
equation

? Forces developer to think in
terms of language constructs
rather than target architecture

? Assertions highlight failures, so
it limits performance data glut

#passert ($flops/(n3*n2*n1))~1
#passert $loads == ($stores*2)
for(i3=2; i3 < n3; i3++)

for(i2=2; i2 < n2; i2++)
for(i1=2; i1<n1; i1++)
{

...
x(i1) = y(i1) * z(i2,i1)

}

PERC
LOGO
HERE

Performance Assertions: Initial
Implementation

?User Assertions
—Specify an equation that asserts some performance

expectation
—Easily disabled
—Implicit notion of data collection
—Integrate application state into equation

pa_start(&pa1, “$flops/(%d*%d*%d))~1”, &n3, &n2, &n1);
for(i3=2; i3 < n3; i3++)

for(i2=2; i2 < n2; i2++)
for(i1=2; i1 < n1; i1++)
{

...
x(i1) = y(i1) * z(i2,i1);

}
pa_end(&pa1);

